79 research outputs found

    A review on recent advances on knowledge management implementations

    Get PDF
    Knowledge management plays an essential role on developing efficient systems in educational systems. However, there are different factors influencing the success of knowledge management. In this paper, we review recent advances on implementation of knowledge management (KM) in different areas and discuss why some of KM implementations fail and how they could turn to a successful one. The review focus more on recently published papers in different perspective from the implementation of KM in educational units to KM implementation on project management field

    PROMOTION OPTIMIZATION IN COMPETITIVE ENVIRONMENTS BY CONSIDERING THE CANNIBALIZATION EFFECT

    Get PDF
    This study proposes a new model to optimize sales promotion in competitive markets and examines the impact of competition on sales promotion planning and business performance in retail chains. The model can be used to determine the best promotional discount for different products with a cannibalization effect when competitors are present in the retail market and offer the same products with different discounts. An integer nonlinear programming problem is proposed to model the above issue. To solve the model, it is reformulated as a mixed-integer linear programming problem. Consequently, a MIP solver can be used to solve the model in a reasonable CPU time. Several examples are solved and a sensitivity analysis of the model parameters is performed. The results of our numerical study show interesting findings that considering different competitors is very important in promotion planning and optimization. Failure to take them into account can lead to loss of profits

    Meta-heuristic Algorithms for an Integrated Production-Distribution Planning Problem in a Multi-Objective Supply Chain

    Get PDF
    In today's globalization, an effective integration of production and distribution plans into a unified framework is crucial for attaining competitive advantage. This paper addresses an integrated multi-product and multi-time period production/distribution planning problem for a two-echelon supply chain subject to the real-world variables and constraints. It is assumed that all transportations are outsourced to third-party logistics providers and all-unit quantity discounts in transportation costs are taken into consideration. The problem has been formulated as a multi-objective mixed-integer linear programming model which attempts to simultaneously minimize total delivery time and total transportation costs. Due to the complexity of the considered problem, genetic algorithm (GA) and particle swarm optimization (PSO) algorithm are developed within the LP-metric method and desirability function framework for solving the real-sized problems in reasonable computational time. As the performance of meta-heuristic algorithms is significantly influenced by calibrating their parameters, Taguchi methodology has been used to tune the parameters of the developed algorithms. Finally, the efficiency and applicability of the proposed model and solution methodologies are demonstrated through several problems in different size

    A Pattern for Measuring Quality of Financial Statements

    Get PDF
    This research aims to present a pattern for measuring the quality of financial statements. To achieve this aim, firstly by reviewing the literature and theoretical background and also running an expert interview, a collection of indexes related to the quality of financial statements are identified, and then by using a questionnaire and performing Fuzzy Delphi method and confirmatory factor analysis we have identified indexes which have a significant effect on the quality of financial statements. After that, using the analytic network process, we have measured the relative weight of each of those indexes (7 indexes) regarding their effect on the quality of financial statements. Lastly, by measuring each of the indexes, and then computing the weighted average of measurements of all indexes (7 indexes), the measure of the quality of financial statements is computed. For assessing the validity of the presented pattern, we have used a regression model for 57 companies listed in Tehran Exchange for years from 1394 to 1396. We have shown that consistent with the literature, there is a significant negative relationship between the quality of financial statements and cost of equity. This relationship proves that the presented pattern has enough validity for measuring the quality of financial statements. Results of this research have shown that average of measures of quality of financial statements for 57 selected firms during years 1394 to 1396 are improved

    Supplier evaluation and selection in fuzzy environments: a review of MADM approaches

    Get PDF
    In past years, the multi-attribute decision-making (MADM) approaches have been extensively applied by researchers to the supplier evaluation and selection problem. Many of these studies were performed in an uncertain environment described by fuzzy sets. This study provides a review of applications of MADM approaches for evaluation and selection of suppliers in a fuzzy environment. To this aim, a total of 339 publications were examined, including papers in peer-reviewed journals and reputable conferences and also some book chapters over the period of 2001 to 2016. These publications were extracted from many online databases and classified in some categories and subcategories according to the MADM approaches, and then they were analysed based on the frequency of approaches, number of citations, year of publication, country of origin and publishing journals. The results of this study show that the AHP and TOPSIS methods are the most popular approaches. Moreover, China and Taiwan are the top countries in terms of number of publications and number of citations, respectively. The top three journals with highest number of publications were: Expert Systems with Applications, International Journal of Production Research and The International Journal of Advanced Manufacturing Technology

    Artificial Intelligence and Its Application in Optimization under Uncertainty

    Get PDF
    Nowadays, the increase in data acquisition and availability and complexity around optimization make it imperative to jointly use artificial intelligence (AI) and optimization for devising data-driven and intelligent decision support systems (DSS). A DSS can be successful if large amounts of interactive data proceed fast and robustly and extract useful information and knowledge to help decision-making. In this context, the data-driven approach has gained prominence due to its provision of insights for decision-making and easy implementation. The data-driven approach can discover various database patterns without relying on prior knowledge while also handling flexible objectives and multiple scenarios. This chapter reviews recent advances in data-driven optimization, highlighting the promise of data-driven optimization that integrates mathematical programming and machine learning (ML) for decision-making under uncertainty and identifies potential research opportunities. This chapter provides guidelines and implications for researchers, managers, and practitioners in operations research who want to advance their decision-making capabilities under uncertainty concerning data-driven optimization. Then, a comprehensive review and classification of the relevant publications on the data-driven stochastic program, data-driven robust optimization, and data-driven chance-constrained are presented. This chapter also identifies fertile avenues for future research that focus on deep-data-driven optimization, deep data-driven models, as well as online learning-based data-driven optimization. Perspectives on reinforcement learning (RL)-based data-driven optimization and deep RL for solving NP-hard problems are discussed. We investigate the application of data-driven optimization in different case studies to demonstrate improvements in operational performance over conventional optimization methodology. Finally, some managerial implications and some future directions are provided

    An Optimization of Multi-product Assembly Lines Using Simulation and Multi-Objective Programming Approach

    Get PDF
    This paper investigates unreliable multi-product assembly lines with mixed (serial-parallel) layout model in which machines failures and repairing probabilities are considered. The aim of this study is to develop a multi-objective mathematical model consisting the maximization of the throughput rate of the system and the minimization of the total cost of reducing mean processing times and the total buffer capacities with respect to the optimal values of the mean processing time of each product in each workstation and the buffer capacity between workstations. For this purpose, in order to configure the structure of the mathematical model, Simulation, Design of Experiments and Response Surface Methodology are used and to solve it, the meta-heuristic algorithms including Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Non-Dominated Ranked Genetic Algorithm (NRGA) are implemented. The validity of the multi-objective mathematical model and the application of the proposed methodology for solving the model is examined on a case study. Finally, the performance of the algorithms used in this study is evaluated. The results show that the proposed multi-objective mathematical model is valid for optimizing unreliable production lines and has the ability to achieve optimal (near optimal) solutions in other similar problems with larger scale and more complexity.IntroductionA production line consists of a sequence of workstations, in each of which parts are processed by machines. In this setup, each workstation includes a number of similar or dissimilar parallel machines, and a buffer is placed between any two consecutive workstations. In production lines, the buffer capacity and processing time of machinery have a significant impact on the system's performance. The presence of buffers helps the system to maintain production despite possible conditions or accidents, such as machinery failure or changes in processing time. Previous research has investigated production lines without any possibility of machinery failure, referred to as "safe production lines." However, in real production lines, machinery failure is inevitable. Therefore, several studies have focused on "uncertain production lines,"assuming the existence of a probability of failure in a deterministic or exponential distribution. This research examines uncertain production lines with a combined layout, resulting from the combination of parallel deployment of machines within each workstation, if necessary, and serial deployment of workstations. The objective of this research is to determine the optimal values (or values close to optimal) of the average processing time of each product in each workstation, as well as the volume of buffers, as decision variables. The approach aims to maximize the system's output while minimizing the costs associated with reducing the processing time of workstations and minimizing the total volume of buffers between stations. Moreover, simulation can be applied without interrupting the production line or consuming significant resources. In this research, due to the high cost and time involved, implementing the proposed changes on the system is not cost-effective for investigating the changes in the production system's output rate. Therefore, the simulation technique has been utilized to optimize the production line.Research methodThe present study aims to develop a multi-objective mathematical model, based on simulation, to optimize multi-product production lines. In the first step, the structure of the multi-objective mathematical model is defined, along with the basic assumptions. To adopt a realistic approach in the model structure, the simulation technique has been employed to address the first objective function, which is maximizing the output rate of the production line. To achieve this, the desired production system is simulated. The design of experiments is used to generate scenarios for implementation in the simulated model, and the response surface methodology is utilized to analyze the relationship between the input variables (such as the average processing time of each product type in each workstation and the buffer volume between stations) and the response variable (production rate).ResultsTo implement the proposed methodology based on the designed multi-objective programming model, a case study of a three-product production line with 9 workstations and 8 buffers was conducted. Subsequently, to compare the performance of the optimization algorithms, five indicators were used: distance from the ideal solution, maximum dispersion, access rate, spacing, and time. For this purpose, 30 random problems, similar to the mathematical model of the case study, were generated and solved. Based on the results obtained, both algorithms exhibited similar performance in all indices, except for the maximum dispersion index.ConclusionsIn this article, the structure of a multi-objective mathematical model was sought in uncertain multi-product production lines with the combined arrangement of machines in series-parallel (parallel installation of machines in workstations if needed and installation of workstations in series). The objective was to determine the optimal values of the average processing time of each type of product in each workstation and the buffer volume of each station, with the goals of maximizing the production rate, minimizing the costs resulting from reducing the processing time, and the total volume of inter-station buffers simultaneously. To investigate the changes in the output rate of the production system, due to the high cost and time, it was deemed not cost-effective to implement the proposed changes on the system. Therefore, the combination of simulation techniques, design of experiments, and response surface methodology was used to fit the relevant metamodel. In the proposed approach of this research, taking a realistic view of production line modeling, the probability of machinery failure, as well as the possibility of repairability and return to the system, were considered in the form of statistical distribution functions. Additionally, all time parameters, including the arrival time between the parts, the start-up time of all the machines, the processing time, the time between two failures, and the repair time of the machines, were non-deterministic and subject to statistical distributions. Finally, to solve the structured mathematical model, two meta-heuristic algorithms (NSGA-II) and (NRGA) were considered

    Investigating different cultural factors on establishment of knowledge management in educational organization

    Get PDF
    Knowledge management plays an essential role on developing efficient systems in educational systems. However, there are different factors influencing the success of knowledge management. In this paper, we present an empirical study to measure the impact of six cultural based factors including management support, organizational affiliation, employee participation in decision-making, staff welfare organization and establishment, adaptation of new policies and organizational and internal organizational climate on establishment of knowledge management. The proposed study of this paper is implemented in 114 selected educational organizations in city of Tehran, Iran. A questionnaire is designed in Likert scale, it is distributed among experts, and using regressions analysis and structural equation modeling, we have analyzed the data. The results of regression analysis indicate that management support, staff welfare organization and internal organizational climate are among the most important factors while other component did not represent any significance on knowledge management implementation

    A New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units

    Get PDF
    Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which ‎consume the same types of inputs and producing the same types of outputs. Believing that future planning and predicting the ‎efficiency are very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with ‎common weights (using multi objective DEA approach) to predict the efficiency of DMUs under mean chance constraints and ‎expected values of the objective functions. In the initial proposed†â€DRF-DEA model, the inputs and outputs are assumed to be ‎characterized by random triangular fuzzy variables with normal distribution, in which data are changing sequentially. Under this ‎assumption, the solution process is very complex. So we then convert the initial proposed DRF-DEA model to its equivalent multi-‎objective stochastic programming, in which the constraints contain the standard normal distribution functions, and the objective ‎functions are the expected values of functions of normal random variables. In order to improve in computational time, we then ‎convert the equivalent multi-objective stochastic model to one objective stochastic model with using fuzzy multiple objectives ‎programming approach. To solve it, we design a new hybrid algorithm by integrating Monte Carlo (MC) simulation and Genetic ‎Algorithm (GA). Since no benchmark is available in the literature, one practical example will be presented. The computational results ‎show that our hybrid algorithm outperforms the hybrid GA algorithm which was proposed by Qin and Liu (2010) in terms of ‎runtime and solution quality. â€

    A closed-loop supply chain network in the edible oil industry using a novel robust stochastic-possibilistic programming

    Get PDF
    In recent years, the complexity of the environment, the intense competition of organizations, the pressure of governments on producers to manage waste products, environmental pressures and most importantly, the benefits of recycling products have added to the importance of designing a closed loop supply chain network. Also, the existence of inherent uncertainties in the input parameters is another important factor that the lack of attention them can affect the strategic, tactical and operational decisions of organizations. Given these reasons, this research aims to design a multi-product and multi period closed loop supply chain network model in uncertainty conditions. To this aim, first a mixed-integer linear programming model is proposed to minimize supply chain costs. Then, for coping with hybrid uncertain parameters effectively, randomness and epistemic uncertainty, a novel robust stochastic-possibilistic programming (RSPP) approach is proposed. Furthermore, several varieties of RSPP models are developed and their differences, weaknesses, strengths and the most suitable conditions for being used are discussed. Finally, usefulness and applicability of the RSPP model are tested via the real case study in an edible oil industry
    corecore